Part Number Hot Search : 
C0251A 21578 0V18L20 SMB5367 V769MEM1 1N4623 D2148 MHP3151K
Product Description
Full Text Search
 

To Download RHF310 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary data this is preliminary information on a new product now in deve lopment or undergoing evaluation. details are subject to change without notice. july 2011 doc id 15577 rev 3 1/22 22 RHF310 rad-hard 400 a high-speed operational amplifier features optimwatt tm device featuring ultra-low 2 mw consumption and low 400 a quiescent current (a) bandwidth: 120 mhz (gain = 2) slew rate: 115 v/ s specified on 1 k input noise: 7.5 nv/ hz tested with 5 v power supply 300 krad mil-std-883 1019.7 eldrs free compliant sel immune at 125 c, let up to 110 mev.cm 2 /mg set characterized, let up to 110 mev.cm 2 /mg qmlv qualified under smd 5962-0723301 mass: 0.45 g applications low-power, high-speed systems communication and space equipment harsh radiation environments adc drivers description the RHF310 is a very low power, high-speed operational amplifier. a bandwidth of 120 mhz is achieved while drawing only 400 a of quiescent current. this low-power characteristic is particularly suitable for high-speed battery powered devices requiring dynamic performance. the RHF310 is a single operator available in a flat-8 package, saving board space as well as providing excellent thermal performance. note: contact your st sales office for information on the specific conditions for products in die form and qml-q versions. a. optimwatt tm is an stmicroelectronics r egistered trademark that applies to products with specific features that optimize energy efficiency. pin connections (top view) nc +vcc nc out -vcc nc in - in + 1 4 8 5 the upper metallic lid is not electrically c onnected to any pins, nor to the ic die inside the package. table 1. device summary order code smd pin quality level package lead finish marking eppl packing RHF310k1 - engineering model flat-8 gold RHF310k1 - strip pack RHF310k-01v 5962f0723301vxc qmlv-flight flat-8 gold 5962f0723101vxc - www.st.com www.datasheet.net/ datasheet pdf - http://www..co.kr/
contents RHF310 2/22 doc id 15577 rev 3 contents 1 absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 2 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 measurement of the input voltage noise en . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 measurement of the negative input current noise inn . . . . . . . . . . . . . . . 14 4.3 measurement of the positive input current noise inp . . . . . . . . . . . . . . . . 14 5 intermodulation distortion produc t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.1 ceramic flat-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 list of figures doc id 15577 rev 3 3/22 list of figures figure 1. frequency response, positive gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 2. frequency response vs. capa-load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 3. output amplitude vs. load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 4. input voltage noise vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 5. distortion at 1 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 6. distortion at 10 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 7. positive slew rate on 1 kw load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 8. negative slew rate on 1 kw load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 9. quiescent current vs. v cc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 figure 10. i sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 11. i source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 12. bandwidth vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 13. cmr vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 14. svr vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 15. slew rate vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 16. r ol vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 17. i bias vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 18. v io vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 19. v oh and v ol vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 20. i out vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 figure 21. i cc vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 figure 22. circuit for power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 23. circuit for +5 v single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 24. noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 25. inverting summing amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 26. compensation of the input bias current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 27. low-pass active filtering, sallen-key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 28. ceramic flat-8 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 www.datasheet.net/ datasheet pdf - http://www..co.kr/
absolute maximum ratings and operating conditions RHF310 4/22 doc id 15577 rev 3 1 absolute maximum ratings and operating conditions table 2. absolute maximum ratings symbol parameter value unit v cc supply voltage (1) (voltage difference between -v cc and +v cc pins) 1. all voltages values are measur ed with respect to the ground pin. 6v v id differential input voltage (2) 2. differential voltage is the non-inverting input termi nal with respect to the inverting input terminal. 0.5 v v in input voltage range (3) 3. the magnitude of input and output voltage must never exceed v cc +0.3 v. 2.5 v t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient area 50 c/w r thjc thermal resistance j unction to case 40 c/w p max maximum power dissipation (4) (at t amb =25c) for t j =150c 4. short-circuits can caus e excessive heating. destructive dissipa tion can result from short circuit on amplifiers. 830 mw esd hbm: human body model (5) pins 1, 4, 5, 6, 7 and 8 pins 2 and 3 5. human body model: a 100 pf capacit or is charged to the specified voltage, then discharged through a 1.5 k resistor between two pins of the device. this is done for all couples of conn ected pin combinations while the other pins are floating. 2 0.5 kv mm: machine model (6) pins 1, 4, 5, 6, 7 and 8 pins 2 and 3 6. this is a minimum value. machine model: a 200 pf capacitor is charged to t he specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ). this is done for all coupl es of connected pin combinations while the other pins are floating. 200 60 v cdm: charged device model (all pins) (7) 7. charged device model: all pins and package are ch arged together to the specified voltage and then discharged directly to gr ound through only one pin. this is done for all pins. 1.5 kv latch-up immunity 200 ma table 3. operating conditions symbol parameter value unit v cc supply voltage 4.5 to 5.5 v v icm common-mode input voltage -v cc +1.5 v to +v cc -1.5 v v t amb operating free-air temperature range (1) 1. tj must never exceed +150c. p = (t j - t amb / r thja = (t j - t case ) / r thjc with p the power that the RHF310 must dissipate in the application. -55 to +125 c www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 electrical characteristics doc id 15577 rev 3 5/22 2 electrical characteristics table 4. electrical characteristics for v cc = 2.5 v, t amb = 25 c (unless otherwise specified) symbol parameter test conditions min. typ. max. unit dc performance v io input offset voltage +125c -6.5 +6.5 mv +25c -6.5 1.7 +6.5 -55c -6.5 +6.5 i ib+ non-inverting input bias current +125c 15 a +25c 3.1 12 -55c 15 i ib- inverting input bias current +125c 7 a +25c 0.1 5 -55c 7 cmr common mode rejection ratio 20 log ( v ic / v io ) v ic = 1 v +125c 55 db +25c 57 61 -55c 55 svr supply voltage rejection ratio 20 log ( v cc / v out ) v cc = 3.5v to 5v +125c 50 db +25c 65 82 -55c 50 psrr power supply rejection ratio 20 log ( v cc / v out ) v cc =200mv pp at 1khz +25c 50 db i cc supply current no load +125c 600 a +25c 400 530 -55c 600 dynamic performance and output characteristics r ol transimpedance v out = 1 v, r l = 1 k +125c 500 k +25c 600 1450 -55c 500 bw small signal -3 db bandwidth on 1k load r fb = 3 k , a v = +1 +25c 230 mhz r fb = 510 , a v = +10 +25c 26 r fb = 3 k , a v = +2 +125c 70 +25c 70 120 -55c 70 gain flatness at 0.1 db v out =20mv pp a v = +2, r l = 1k +25c 25 www.datasheet.net/ datasheet pdf - http://www..co.kr/
electrical characteristics RHF310 6/22 doc id 15577 rev 3 sr slew rate v out = 2 v pp , a v = +2, r l = 100 +25c 115 v/ s v oh high level output voltage r l = 100 +125c 1.5 v +25c 1.55 1.65 -55c 1.5 v ol low level output voltage r l = 100 +125c -1.5 v +25c -1.66 -1.55 -55c -1.5 i out i sink (1) output to gnd +125c 70 ma +25c 70 110 -55c 70 i source (2) output to gnd +125c 60 +25c 60 100 -55c 60 noise and distortion en equivalent input noise voltage (3) f = 100 khz +25c 7.5 nv/ hz in equivalent positive input noise current (3) f = 100 khz +25c 13 pa/ hz equivalent negative input noise current (3) f = 100 khz +25c 6 pa/ hz sfdr spurious free dynamic range a v = +2, v out = 2 v pp , r l = 100 +25c dbc f = 1 mhz +25c -87 f = 10 mhz +25c -55 1. see figure 10 for more details. 2. see figure 11 for more details. 3. see chapter 5 on page 15 . table 4. electrical characteristics for v cc = 2.5 v, t amb = 25 c (unless otherwise specified) (continued) symbol parameter test conditions min. typ. max. unit table 5. closed-loop gain and feedback components gain (v/v) + 2 - 2 + 4 - 4 + 10 - 10 r fb ( ) 1.2k 1k 150 300 100 180 www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 electrical characteristics doc id 15577 rev 3 7/22 figure 1. frequency response, positive gain figure 2. frequency response vs. capa-load 1m 10m 100m -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 gain=+1 gain=+2 gain=+4 small signal vcc=5v load=1k gain=+10 gain (db) frequency (hz) 1m 10m 100m -10 -8 -6 -4 -2 0 2 4 6 8 10 c-load=4.7pf r-iso=0 + - 3k 3k vin vout gain=+2, vcc=5v, small signal 1k c-load r-iso + - 3k 3k vin vout gain=+2, vcc=5v, small signal 1k c-load r-iso c-load=10pf r-iso=33 ohms c-load=22pf r-iso=47ohms gain (db) frequency (hz) figure 3. output amplitude vs. load figure 4. input voltage noise vs. frequency 10 100 1k 10k 100k 2.0 2.5 3.0 3.5 4.0 max output amplitude (vp-p) load (ohms) gain=32db rg=12ohms rfb=510ohms non-inverting input in short-circuit vcc=5v figure 5. distortion at 1 mhz figure 6. distortion at 10 mhz 01234 -100 -90 -80 -70 -60 -50 -40 -30 -20 h2 h3 vcc=5v f=1mhz load=1k h2 and h3 (dbc) output (vp-p) 01234 -80 -70 -60 -50 -40 -30 -20 -10 0 h2 h3 vcc=5v f=10mhz load=1k h2 and h3 (dbc) output (vp-p) www.datasheet.net/ datasheet pdf - http://www..co.kr/
electrical characteristics RHF310 8/22 doc id 15577 rev 3 figure 7. positive slew rate on 1 k load figure 8. negative slew rate on 1 k load figure 9. quiescent current vs. v cc figure 10. i sink 1.25 1.50 1.75 2.00 2.25 2.50 -400 -200 0 200 400 gain=+2 vcc=5v inputs to ground, no load icc (micro-a) icc(+) icc(-) +/-vcc (v) -2.0 -1.5 -1.0 -0.5 0.0 0 25 50 75 100 125 150 i s ink (ma) v (v) figure 11. i source figure 12. bandwidth vs. temperature 0.0 0.5 1.0 1.5 2.0 -150 -125 -100 -75 -50 -25 0 i s ource (ma) v (v) -40 -20 0 20 40 60 80 100 120 90 100 110 120 130 140 150 160 170 180 190 200 gain=+2 vcc=5v load=1k bw (mhz) temperature (c) www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 electrical characteristics doc id 15577 rev 3 9/22 figure 13. cmr vs. temperature figure 14. svr vs. temperature -40 -20 0 20 40 60 80 100 120 56 58 60 62 64 66 vcc=5v load=1k cmr (db) temperature (c) -40 -20 0 20 40 60 80 100 120 70 72 74 76 78 80 82 84 86 88 90 vcc=5v load=1k svr (db) temperature (c) figure 15. slew rate vs. temperature figure 16. r ol vs. temperature -40 -20 0 20 40 60 80 100 120 80 90 100 110 120 130 140 neg. sr pos. sr gain=+2 vcc=5v load=1k sr (v/micro?s) temperature (c) -40 -20 0 20 40 60 80 100 120 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 open loop vcc=5v r ol (m ) temperature (c) figure 17. i bias vs. temperature figure 18. v io vs. temperature -40 -20 0 20 40 60 80 100 120 -3 -2 -1 0 1 2 3 4 5 vcc=5v i bias ( a) ib(+) ib(?) temperature (c) -40 -20 0 20 40 60 80 100 120 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 open loop vcc=5v temperature ( c) vio (mv) www.datasheet.net/ datasheet pdf - http://www..co.kr/
electrical characteristics RHF310 10/22 doc id 15577 rev 3 figure 19. v oh and v ol vs. temperature figure 20. i out vs. temperature figure 21. i cc vs. temperature -40-20 0 20406080 -4 -3 -2 -1 0 1 2 gain=+2 vcc=+/-2.5v load=1k v ol v oh v oh & ol (v) temperature (c) -40 -20 0 20 40 60 80 100 120 -300 -250 -200 -150 -100 -50 0 50 100 150 200 output: short-circuit vcc=5v iout (ma) isource isink temperature (c) -40 -20 0 20 40 60 80 100 120 -1000 -800 -600 -400 -200 0 200 400 gain=+2 vcc=5v no load in(+) and in(-) to gnd icc(+) icc(-) temperature ( c) i cc (micro a) www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 power supply considerations doc id 15577 rev 3 11/22 3 power supply considerations correct power supply bypassing is very important for optimizing the performance of the device in high-frequency ranges. the bypass capacitors should be placed as close as possible to the ic pins to improve high-frequency bypassing. a capacitor greater than 1 f is necessary to minimize the distortion. for better quality bypassing, a capacitor of 10 nf can be added, which should also be placed as close as possible to the ic pins. the bypass capacitors must be incorporated for both the negative and positive supply. figure 22. circuit for power supply bypassing 3.1 single power supply if you use a single-supply system, biasing is ne cessary to obtain a positive output dynamic range between the 0 v and +v cc supply rails. considering the values of v oh and v ol , the amplifier provides an output swing from +0.9 v to +4.1 v on 1 k loads. the amplifier must be biased with a mid-supply (nominally +v cc /2) in order to maintain the dc component of the signal at this value. several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). a high resistance value is required to limit the current consumption. on the other hand, the current must be high enough to bias the non-inverting input of the amplifier. if we consider this bias current (55 a maximum) as 1% of the current through the resistance divider, two resistances of 470 can be used to maintain a mid supply. the input provides a high-pass filter with a break frequency below 10 hz, which is necessary to remove the original 0 v dc component of the input signal and to set it at +v cc /2. figure 23 on page 12 illustrates a 5 v single power supply configuration. a capacitor c g is added in the gain network to ensure a unity gain at low frequencies to keep the right dc component at the output. c g contributes to a high-pass filter with r fb //r g and its value is calculated with a consideration of the cut-off frequency of this low-pass filter. + +v cc 10 f + 10 nf 10 f + 10 nf - -v cc am00 83 5 www.datasheet.net/ datasheet pdf - http://www..co.kr/
power supply considerations RHF310 12/22 doc id 15577 rev 3 figure 23. circuit for +5 v single supply + _ r2 470 r g in +5 v 1 k out r f b 10 f + 1 f r1 470 +5 v 10 nf r in 1 k c g + am00 8 41 www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 noise measurements doc id 15577 rev 3 13/22 4 noise measurements the noise model is shown in figure 24 . en: input voltage noise of the amplifier. inn: negative input current noise of the amplifier. inp: positive input current noise of the amplifier. figure 24. noise model the thermal noise of a resistance r is: where f is the specified bandwidth, and k is the boltzmann's constant, equal to 1,374.10-23j/k. t is the temperature (k). on a 1 hz bandwidth the thermal noise is reduced to: the output noise eno is calculated using the superposition theorem. however, eno is not the simple sum of all noise sources but rather the square root of the sum of the square of each noise source, as shown in equation 1 . equation 1 + _ r 3 r1 o u tp u t r2 in - in + hp 3 577 inp u t noi s e: 8 nv/ hz n1 n2 n 3 en am00 83 7 4ktr f 4ktr eno v1 2 v2 2 v3 2 v4 2 v5 2 v6 2 +++++ = www.datasheet.net/ datasheet pdf - http://www..co.kr/
noise measurements RHF310 14/22 doc id 15577 rev 3 equation 2 the input noise of the instrumentation must be extracted from the measured noise value. the real output noise value of the driver is: equation 3 the input noise is called equivalent input noise because it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eno/g). after simplification of the fourth and fifth terms of equation 2 , you obtain: equation 4 4.1 measurement of the input voltage noise en assuming a short-circuit on the non-inverting input (r3=0), from equation 4 you can derive: equation 5 to easily extract the value of en, the resistance r2 must be as low as possible. on the other hand, the gain must be high enough. r3=0, gain: g=100 4.2 measurement of the negative input current noise inn to measure the negative input current noise inn, r3 is set to zero and equation 5 is used. this time, the gain must be lower in order to decrease the thermal noise contribution. r3=0, gain: g=10 4.3 measurement of the positive input current noise inp to extract inp from equation 3 , a resistance r3 is connected to the non-inverting input. the value of r3 must be selected so as to keep its thermal noise contribution as low as possible against the inp contribution. r3=100 , gain: g=10 eno 2 en 2 g 2 inn 2 r2 2 inp 2 + + r3 2 g 2 r2 r1 ------- - 2 4ktr1 4ktr2 1 r2 r1 ------- - + 2 4ktr3 ++ + = eno measured () 2 instrumentation () 2 ? = eno 2 en 2 g 2 inn 2 r2 2 inp 2 + + r3 2 g 2 g4ktr21 r2 r1 ------- - + 2 4ktr3 + + = eno en 2 g 2 inn 2 r2 2 g4ktr2 + + = www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 intermodulation distortion product doc id 15577 rev 3 15/22 5 intermodulation distortion product the non-ideal output of the amplifier can be described by the following series of equations. where the input is v in = asin t, c 0 is the dc component, c 1 (v in ) is the fundamental and c n is the amplitude of the harmonics of the output signal v out . a one-frequency (one-tone) input signal contributes to harmonic distortion. a two-tone input signal contributes to harmonic distortion and to the intermodulation product. the study of the intermodulation and distortion for a two-tone input signal is the first step in characterizing the driving capab ility of multi-tone input signals. in this case: therefore: from this expression, we can extract the distortion terms and the intermodulation terms from a single sine wave. second-order intermodulation terms im2 by the frequencies ( 1 - 2 ) and ( 1 + 2 ) with an amplitude of c2a 2 . third-order intermodulation terms im3 by the frequencies (2 1 - 2 ), (2 1 + 2 ), ( ? 1 +2 2 ) and ( 1 +2 2 ) with an amplitude of (3/4)c3a 3 . the intermodulation product of the driver is measured by using the driver as a mixer in a summing amplifier configuration ( figure 25 ). in this way, the non-linearity problem of an external mixing device is avoided. v out c 0 c 1 v in c 2 v 2 in c + n v n in ++ + = v in a 1 t sin a 2 t sin + = v out c 0 c 1 a 1 t sin a 2 t sin + () c 2 a 1 t sin a 2 t sin + () 2 c n a 1 t sin a 2 t sin + () n ++ + = www.datasheet.net/ datasheet pdf - http://www..co.kr/
intermodulation distortion product RHF310 16/22 doc id 15577 rev 3 figure 25. inverting summing amplifier + _ r r f b 1 k v o u t r 2 v in2 v in1 r 1 am00 8 42 www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 bias of an inverting amplifier doc id 15577 rev 3 17/22 6 bias of an inverting amplifier a resistance is necessary to achieve good input biasing, such as resistance r shown in figure 26 . the value of this resistance is calculated from the negative and positive input bias current. the aim is to compensate for the offset bias current, which can affect the input offset voltage and the output dc component. assuming i ib- , i ib+ , r in , r fb and a 0 v output, the resistance r is: figure 26. compensation of the input bias current r r in r fb r in r + fb ----------------------- = r lo a d o u tp u t r f b r in i i b - i i b + v cc + v cc - + _ am00 83 9 www.datasheet.net/ datasheet pdf - http://www..co.kr/
active filtering RHF310 18/22 doc id 15577 rev 3 7 active filtering figure 27. low-pass active filtering, sallen-key from the resistors r fb and r g it is possible to directly calc ulate the gain of the filter in a classic non-inverting amplification configuration. the response of the system is assumed to be: the cut-off frequency is not gain-dependent and so becomes: the damping factor is calculated using the following expression. the higher the gain, the more sensitive the damping factor. when the gain is higher than 1, it is preferable to use very stable resistor and capacitor values. in the case of r1=r2=r: due to a limited selection of capacitor values in comparison with the resistors, you can set c1=c2=c, so that: + _ r g in r f b 1 k out r 1 r 2 c2 c1 am00 8 4 3 a v g1 r fb r g -------- + == t j vout j vin j ----------------- - g 12 j c ------ j () 2 c 2 ------------ - ++ ------------------------------------------- == c 1 r1r2c1c2 ------------------------------------ - = 1 2 -- - c c 1 r 1 c 1 r 2 c 2 r 1 c 1 r 1 g ? ++ () = 2c 2 c 1 r fb r g -------- ? 2c 1 c 2 -------------------------------- - = 2r 2 r 1 r fb r g -------- ? 2r 1 r 2 -------------------------------- - = www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 package information doc id 15577 rev 3 19/22 8 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark. www.datasheet.net/ datasheet pdf - http://www..co.kr/
package information RHF310 20/22 doc id 15577 rev 3 8.1 ceramic flat-8 package information figure 28. ceramic flat-8 package mechanical drawing note: the upper metallic lid is not electrically connected to any pins, nor to the ic die inside the package. connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics. table 6. ceramic flat-8 package mechanical data ref. dimensions millimeters inches min. typ. max. min. typ. max. a 2.24 2.44 2.64 0.088 0.096 0.104 b 0.38 0.43 0.48 0.015 0.017 0.019 c 0.10 0.13 0.16 0.004 0.005 0.006 d 6.35 6.48 6.61 0.250 0.255 0.260 e 6.35 6.48 6.61 0.250 0.255 0.260 e2 4.32 4.45 4.58 0.170 0.175 0.180 e3 0.88 1.01 1.14 0.035 0.040 0.045 e 1.27 0.050 l 3.00 0.118 q 0.66 0.79 0.92 0.026 0.031 0.092 s1 0.92 1.12 1.32 0.036 0.044 0.052 n08 08 www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 revision history doc id 15577 rev 3 21/22 9 revision history table 7. document revision history date revision changes 26-may-2009 1 initial release. 12-jul-2010 2 added mass in features on cover page. added table 1: device summary on cover page, with full ordering information. updated temperature limits for t min < t amb < t max in table 3: operating conditions . 27-jul-2011 3 added note: on page 20 and in the "pin connections" diagram on the coverpage. www.datasheet.net/ datasheet pdf - http://www..co.kr/
RHF310 22/22 doc id 15577 rev 3 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by two authorized st representatives, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2011 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com www.datasheet.net/ datasheet pdf - http://www..co.kr/


▲Up To Search▲   

 
Price & Availability of RHF310

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X